منابع مشابه
Jackknife Model Averaging for Quantile Regressions
In this paper we consider the problem of frequentist model averaging for quantile regression (QR) when all the models under investigation are potentially misspecified and the number of parameters in some or all models is diverging with the sample size To allow for the dependence between the error terms and the regressors in the QR models, we propose a jackknife model averaging (JMA) estima...
متن کاملPrediction of Linear Models: Application of Jackknife Model Averaging
When using linear models, a common practice is to find the single best model fit used in predictions. This on the other hand can cause potential problems such as misspecification and sometimes even wrong models due to spurious regression. Another method of predicting models introduced in this study as Jackknife Model Averaging developed by Hansen & Racine (2012). This assigns weights to all pos...
متن کاملPredicting waste generation using Bayesian model averaging
A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...
متن کاملGreedy Model Averaging
This paper considers the problem of combining multiple models to achieve a prediction accuracy not much worse than that of the best single model for least squares regression. It is known that if the models are mis-specified, model averaging is superior to model selection. Specifically, let n be the sample size, then the worst case regret of the former decays at the rate of O(1/n) while the wors...
متن کاملTuned Bayesian Model Averaging
In this paper, we suggest an empirical Bayes-type prior for the model space in Bayesian model averaging (BMA) in a method we call tuned Bayesian model averaging (tBMA). This method relies on leave-one-out cross validation to choose a hyper-parameter that will cause the averaging process to favor either smaller or richer models in the prior distribution over the models. We find that this method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2012
ISSN: 0304-4076
DOI: 10.1016/j.jeconom.2011.06.019